Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.037
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38583695

RESUMO

Human activities have directly impacted the environment, causing significant ecological imbalances. From the different contaminants resulting from human activities, plastics are of major environmental concern. Due to their high use and consequent discharge, plastics tend to accumulate in aquatic environments. There, plastics can form smaller particles (microplastics, MPs), due to fragmentation and weathering, which are more prone to interact with aquatic organisms and cause deleterious effects, including at the basis of different food webs. This study assessed the effects of two microplastics (polyethylene terephthalate, PET; and polypropylene, PP; both of common domestic use) in the freshwater cladoceran species Daphnia magna. Toxic effects were assessed by measuring reproductive traits (first brood and total number of offspring), and activities of biomarkers involved in xenobiotic metabolism (phase I: cytochrome P-450 isoenzymes CYP1A1, 1A2 and 3A4; phase II/conjugation: glutathione S-transferases; and antioxidant defense (catalase)). Both MPs showed a potential to significantly reduce reproductive parameters in D. magna. Furthermore, PET caused a significant increase in some isoenzymes of CYP450 in acutely exposed organisms, but this effect was not observed in chronically exposed animals. Similarly, the activity of the antioxidant defense (CAT) was significantly increased in acutely exposed animals, but not in chronically exposed organisms. This pattern of effects suggests a possible mechanism of long-term adaptation to the presence of the tested MPs. In conclusion, the herein tested MPs have shown the potential to induce deleterious effects on D. magna mainly observed in terms of the reproductive outcomes. Changes at the biochemical level seems transient and are not likely to occur in long term, environmentally exposed crustaceans.


Assuntos
Daphnia , Microplásticos , Reprodução , Poluentes Químicos da Água , Animais , Daphnia/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Microplásticos/toxicidade , Água Doce , Biomarcadores/metabolismo , Glutationa Transferase/metabolismo , Polipropilenos/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Daphnia magna
2.
Plant Physiol Biochem ; 210: 108612, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598867

RESUMO

Biosynthesis of Amaryllidaceae alkaloids (AA) starts with the condensation of tyramine with 3,4-dihydroxybenzaldehyde. The latter derives from the phenylpropanoid pathway that involves modifications of trans-cinnamic acid, p-coumaric acid, caffeic acid, and possibly 4-hydroxybenzaldehyde, all potentially catalyzed by hydroxylase enzymes. Leveraging bioinformatics, molecular biology techniques, and cell biology tools, this research identifies and characterizes key enzymes from the phenylpropanoid pathway in Leucojum aestivum. Notably, we focused our work on trans-cinnamate 4-hydroxylase (LaeC4H) and p-coumaroyl shikimate/quinate 3'-hydroxylase (LaeC3'H), two key cytochrome P450 enzymes, and on the ascorbate peroxidase/4-coumarate 3-hydroxylase (LaeAPX/C3H). Although LaeAPX/C3H consumed p-coumaric acid, it did not result in the production of caffeic acid. Yeasts expressing LaeC4H converted trans-cinnamate to p-coumaric acid, whereas LaeC3'H catalyzed specifically the 3-hydroxylation of p-coumaroyl shikimate, rather than of free p-coumaric acid or 4-hydroxybenzaldehyde. In vivo assays conducted in planta in this study provided further evidence for the contribution of these enzymes to the phenylpropanoid pathway. Both enzymes demonstrated typical endoplasmic reticulum membrane localization in Nicotiana benthamiana adding spatial context to their functions. Tissue-specific gene expression analysis revealed roots as hotspots for phenylpropanoid-related transcripts and bulbs as hubs for AA biosynthetic genes, aligning with the highest AAs concentration. This investigation adds valuable insights into the phenylpropanoid pathway within Amaryllidaceae, laying the foundation for the development of sustainable production platforms for AAs and other bioactive compounds with diverse applications.


Assuntos
Alcaloides de Amaryllidaceae , Proteínas de Plantas , Transcinamato 4-Mono-Oxigenase , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transcinamato 4-Mono-Oxigenase/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Alcaloides de Amaryllidaceae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
J Nat Prod ; 87(4): 1036-1043, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38600636

RESUMO

Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6ß-OH derivatives, marking the first confirmed C-6ß hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1ß and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 µM.


Assuntos
Anti-Inflamatórios , Sistema Enzimático do Citocromo P-450 , Transferases Intramoleculares , Triterpenos , Triterpenos/farmacologia , Triterpenos/química , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Estrutura Molecular , Saccharomyces cerevisiae , Hidroxilação , Células Hep G2 , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química
4.
Biopharm Drug Dispos ; 45(2): 107-114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573807

RESUMO

VX-548 is a sodium channel blocker, which acts as an analgesic. This study aims to investigate the gender differences in the pharmacokinetics and metabolism of VX-548 in rats. After intravenous administration, the area under the curve (AUC0-t) of VX-548 was much higher in female rats (1505.8 ± 47.3 ng·h/mL) than in male rats (253.8 ± 6.3 ng·h/mL), and the clearance in female rats (12.5 ± 0.8 mL/min/kg) was much lower than in male rats (65.1 ± 1.7 mL/min/kg). After oral administration, the AUC0-t in female rats was about 50-fold higher than that in male rats. The oral bioavailability in male rats was 11% while it was 96% in female rats. An in vitro metabolism study revealed that the metabolism of VX-548 in female rat liver microsomes was much slower than in male rats. Further metabolite identification suggested that the significant gender difference in pharmacokinetics was attributed to demethylation. The female rat liver microsomes showed a limited ability to convert VX-548 into desmethyl VX-548. Phenotyping experiments indicated that the formation of desmethyl VX-548 was mainly catalyzed by CYP3A2 and CYP2C11 using rat recombinant CYPs. Overall, we revealed that the pharmacokinetics and metabolism of VX-548 in male and female rats showed significant gender differences.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Compostos Organotiofosforados , Ratos , Masculino , Feminino , Animais , Fatores Sexuais , Sistema Enzimático do Citocromo P-450/metabolismo , Disponibilidade Biológica , Microssomos Hepáticos/metabolismo , Administração Oral
5.
Oncol Res ; 32(4): 785-797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560574

RESUMO

Cytochromes P450 (CYPs) play a prominent role in catalyzing phase I xenobiotic biotransformation and account for about 75% of the total metabolism of commercially available drugs, including chemotherapeutics. The gene expression and enzyme activity of CYPs are variable between individuals, which subsequently leads to different patterns of susceptibility to carcinogenesis by genotoxic xenobiotics, as well as differences in the efficacy and toxicity of clinically used drugs. This research aimed to examine the presence of the CYP2B6*9 polymorphism and its possible association with the incidence of B-CLL in Egyptian patients, as well as the clinical outcome after receiving cyclophosphamide chemotherapy. DNA was isolated from whole blood samples of 100 de novo B-CLL cases and also from 100 sex- and age-matched healthy individuals. The presence of the CYP2B6*9 (G516T) polymorphism was examined by PCR-based allele specific amplification (ASA). Patients were further indicated for receiving chemotherapy, and then they were followed up. The CYP2B6*9 variant indicated a statistically significant higher risk of B-CLL under different genetic models, comprising allelic (T-allele vs. G-allele, OR = 4.8, p < 0.001) and dominant (GT + TT vs. GG, OR = 5.4, p < 0.001) models. Following cyclophosphamide chemotherapy, we found that the patients with variant genotypes (GT + TT) were less likely to achieve remission compared to those with the wild-type genotype (GG), with a response percentage of (37.5% vs. 83%, respectively). In conclusion, our findings showed that the CYP2B6*9 (G516T) polymorphism is associated with B-CLL susceptibility among Egyptian patients. This variant greatly affected the clinical outcome and can serve as a good therapeutic marker in predicting response to cyclophosphamide treatment.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Citocromo P-450 CYP2B6/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/epidemiologia , Leucemia Linfocítica Crônica de Células B/genética , Incidência , Egito/epidemiologia , Sistema Enzimático do Citocromo P-450/genética , Genótipo , Ciclofosfamida/efeitos adversos
6.
Pestic Biochem Physiol ; 201: 105857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685236

RESUMO

The oriental tobacco budworm Helicoverpa assulta (Lepidoptera: Noctuidae) is a specialist pest that may cause serious damages to important crops such as chili pepper and tobacco. Various man-made insecticides have been applied to control the infestation of this pest. To understand how this pest copes with insecticides, it is required to identify key players involved in insecticide transformation. In this study, a P450 gene of CYP6B subfamily was identified in the oriental tobacco budworm, and its expression pattern was revealed. Moreover, the activities of HassCYP6B6 against 12 insecticides were explored using recombinant enzymes produced in the facile Escherichia coli. Data from metabolic experiments showed that HassCYP6B6 was able to metabolize conventional insecticides including organophosporates (diazinon, malathion, phoxim), carbamate propoxur, and pyrethroid esfenvalerate, while no significant metabolism was observed towards new-type pesticides such as neonicotinoids (acetamiprid, imidacloprid), diamides (chlorantraniliprole, cyantraniliprole), macrocyclic lactone (emamectin benzoate, ivermectin), and metaflumizone. Structures of metabolites were proposed based on mass spectrometry analyses. The results demonstrate that HassCYP6B6 plays important roles in the transformation of multiple insecticides via substrate-dependent catalytic mechanisms including dehydrogenation, hydroxylation and oxidative desulfurization. The findings have important applied implications for the usage of insecticides.


Assuntos
Inseticidas , Mariposas , Inseticidas/metabolismo , Animais , Mariposas/genética , Mariposas/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética
7.
Mol Biol Rep ; 51(1): 526, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632160

RESUMO

BACKGROUND: Vitamin D deficiency is prevalent among the Indonesian population, particularly in individuals diagnosed with leukemia-lymphoma. The regulation of vitamin D metabolism is influenced by the expression of several enzymes, such as CYP2R1, CYP24A1, and the vitamin D receptor (VDR). This study aimed to scrutinize the gene expression profiles in both mRNA and protein levels of VDR, CYP2R1, and CYP24A1 in leukemia and lymphoma patients. METHOD: The research was a cross-sectional study conducted at Cipto Mangunkusumo Hospital (RSCM) in Jakarta, Indonesia. The study included a total of 45 patients aged over 18 years old who have received a diagnosis of lymphoma or leukemia. Vitamin D status was measured by examining serum 25 (OH) D levels. The analysis of VDR, CYP2R1, and CYP24A1 mRNA expression utilized the qRT-PCR method, while protein levels were measured through the ELISA method. CONCLUSION: The study revealed a noteworthy difference in VDR protein levels between men and women. The highest mean CYP24A1 protein levels were observed in the age group > 60 years. This study found a significant, moderately positive correlation between VDR protein levels and CYP24A1 protein levels in the male and vitamin D sufficiency groups. In addition, a significant positive correlation was found between VDR mRNA levels and CYP2R1 mRNA levels, VDR mRNA levels and CYP2R1 mRNA levels, and CYP2R1 mRNA levels and CYP24A1 mRNA levels. However, the expression of these genes does not correlate with the protein levels of its mRNA translation products in blood circulation.


Assuntos
Colestanotriol 26-Mono-Oxigenase , Família 2 do Citocromo P450 , Leucemia , Linfoma , Receptores de Calcitriol , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Colestanotriol 26-Mono-Oxigenase/genética , Estudos Transversais , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450/genética , Perfilação da Expressão Gênica , Leucemia/genética , Leucemia/metabolismo , Linfoma/genética , Linfoma/metabolismo , Receptores de Calcitriol/genética , RNA Mensageiro/metabolismo , Vitamina D , Vitamina D3 24-Hidroxilase/genética , População do Sudeste Asiático/genética
8.
Ecotoxicol Environ Saf ; 276: 116287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579532

RESUMO

Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.


Assuntos
Apoptose , Benzo(a)pireno , Sobrevivência Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placenta , Receptores de Hidrocarboneto Arílico , Trofoblastos , Humanos , Benzo(a)pireno/toxicidade , Placenta/efeitos dos fármacos , Placenta/citologia , Linhagem Celular , Feminino , Gravidez , Apoptose/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Inflamação/induzido quimicamente , Hipóxia Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
9.
Sci Rep ; 14(1): 7922, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575662

RESUMO

Breast cancer (BC) is the most prevalent malignancy in women globally. At time of diagnosis, premenopausal BC is considered more aggressive and harder to treat than postmenopausal cases. Cytochrome P450 (CYP) enzymes are responsible for phase I of estrogen metabolism and thus, they are prominently involved in the pathogenesis of BC. Moreover, CYP subfamily 2C and 3A play a pivotal role in the metabolism of taxane anticancer agents. To understand genetic risk factors that may have a role in pre-menopausal BC we studied the genotypic variants of CYP2C8, rs11572080 and CYP3A4, rs2740574 in female BC patients on taxane-based therapy and their association with menopausal status. Our study comprised 105 female patients with histologically proven BC on paclitaxel-therapy. They were stratified into pre-menopausal (n = 52, 49.5%) and post-menopausal (n = 53, 50.5%) groups. Genotyping was done using TaqMan assays and employed on Quantstudio 12 K flex real-time platform. Significant increased frequencies of rs11572080 heterozygous CT genotype and variant T allele were established in pre-menopausal group compared to post-menopausal group (p = 0.023, 0.01, respectively). Moreover, logistic regression analysis revealed a significant association between rs11572080 CT genotype and premenopausal BC. However, regarding rs2740574, no significant differences in genotypes and allele frequencies between both groups were detected. We reported a significant association between CYP2C8 genotypic variants and premenopausal BC risk in Egyptian females. Further studies on larger sample sizes are still needed to evaluate its importance in early prediction of BC in young women and its effect on treatment outcome.


Assuntos
Neoplasias da Mama , Paclitaxel , Humanos , Feminino , Paclitaxel/efeitos adversos , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP3A/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Genótipo , Sistema Enzimático do Citocromo P-450/genética
10.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38618721

RESUMO

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Assuntos
Microbioma Gastrointestinal , Resistência a Inseticidas , Piretrinas , Espécies Reativas de Oxigênio , Tephritidae , Animais , Espécies Reativas de Oxigênio/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Resistência a Inseticidas/genética , Tephritidae/microbiologia , Tephritidae/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efeitos dos fármacos , Lactobacillales/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efeitos dos fármacos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
11.
Environ Toxicol ; 39(6): 3641-3653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504311

RESUMO

Daphnia magna is a test organism used for ecological risk assessments of pesticides, but little is known about the expression levels of cytochrome P450s (CYP)s and their changes after pesticide exposure in the less than 24-h-olds used for ecotoxicity tests. In this study, D. magna juveniles were exposed to 0.2 µg/L of chlorpyrifos under the conditions for acute immobilization test as specified by the OECD test guideline for 24 h, and then the gene expression was compared between the control and chlorpyrifos-exposure groups by RNA-sequencing analysis, with a focus on CYP genes. Among 38 CYP genes expressed in the control group, seven were significantly up-regulated while two were significantly down-regulated in the chlorpyrifos-exposure group. Although the sublethal concentration of chlorpyrifos did not change their expression levels so drastically (0.8 < fold change < 2.6), CY360A8 of D. magna (DmCYP360A8), which had been proposed to be responsible for metabolism of xenobiotics, was abundantly expressed in controls yet up-regulated by chlorpyrifos. Therefore, homology modeling of DmCYP360A8 was performed based on the amino acid sequence, and then molecular docking simulations with the insecticides that were indicated to be metabolized by CYPs in D. magna were conducted. The results indicated that DmCYP360A8 could contribute to the metabolism of diazinon and chlorfenapyr but not chlorpyrifos. These findings suggest that chlorpyrifos is probably detoxified by other CYP(s) including up-regulated and/or constitutively expressed one(s).


Assuntos
Clorpirifos , Sistema Enzimático do Citocromo P-450 , Daphnia , Poluentes Químicos da Água , Clorpirifos/toxicidade , Animais , Daphnia/efeitos dos fármacos , Daphnia/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Poluentes Químicos da Água/toxicidade , Regulação para Cima/efeitos dos fármacos , Inseticidas/toxicidade , Simulação de Acoplamento Molecular , Praguicidas/toxicidade , Daphnia magna
12.
Drug Saf ; 47(4): 355-363, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460070

RESUMO

BACKGROUND: Pulmonary toxicity has been associated with drug use. This is often not recognized in clinical practice, and underestimated. OBJECTIVE: We aimed to establish whether polymorphisms in certain genes corresponding with a metabolic pathway of drug(s) used are associated with pulmonary toxicity in patients with suspected drug-induced interstitial lung disease (DI-ILD). METHODS: This retrospective observational study explored genetic variations in three clinically relevant cytochrome P450 (CYP) iso-enzymes (i.e., CYP2D6, CYP2C9, and CYP2C19) in a group of patients with a fibroticinterstitial lung disease, either non-specific interstitial pneumonia (n = 211) or idiopathic pulmonary fibrosis (n = 256), with a suspected drug-induced origin. RESULTS: Of the 467 patients, 79.0% showed one or more polymorphisms in the tested genes accompanied by the use of drug(s) metabolized by a corresponding affected metabolic pathway (60.0% poor metabolizers and/or using two or more drugs [likely DI-ILD], 37.5% using three or more [highly likely DI-ILD]). Most commonly used drugs were statins (63.1%) with a predominance among men (69.4 vs 47.1%, p < 0.0001). Nitrofurantoin, not metabolized by the tested pathways, was prescribed more frequently among women (51.9 vs 4.5%, p < 0.00001). CONCLUSIONS: In our cohort with suspected DI-ILD, 79% carried one or more genetic variants accompanied by the use of drugs metabolized by a corresponding affected pathway. In 60%, the diagnosis of DI-ILD was likely, whereas in 37.5%, it was highly likely, based on CYP analyses. This study underlines the importance of considering both drug use and genetic make-up as a possible cause, or at least a contributing factor, in the development and/or progression of fibrotic lung diseases. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00267800, registered in 2005.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Masculino , Humanos , Feminino , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Sistema Enzimático do Citocromo P-450/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/complicações , Medição de Risco
13.
Cell Biol Toxicol ; 40(1): 18, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528259

RESUMO

The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.


Assuntos
Citocromo P-450 CYP1A1 , Xenobióticos , Bovinos , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistemas CRISPR-Cas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Linhagem Celular
14.
Science ; 383(6690): 1448-1454, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547266

RESUMO

The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hordeum , Alcaloides Indólicos , Família Multigênica , Hordeum/genética , Hordeum/metabolismo , Alcaloides Indólicos/metabolismo , Melhoramento Vegetal , Oxirredução , Triptofano/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Edição de Genes , Genes de Plantas
15.
Toxicology ; 504: 153774, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490321

RESUMO

N-nitrosonornicotine (NNN) and N-nitrosoanabasine (NAB) are both tobacco-specific nitrosamines bearing two heterocyclic amino groups, NAB bearing an extra -CH2- group (conferring a hexa- rather than penta-membered cycle) but with significantly decreased carcinogenicity. However, their activating enzymes and related mutagenicity remain unclear. In this study, the chemical-CYP interaction was analyzed by molecular docking, thus the binding energies and conformations of NNN for human CYP2A6, 2A13, 2B6, 2E1 and 3A4 appeared appropriate as a substrate, so did NAB for human CYP1B1, 2A6, 2A13 and 2E1. The micronucleus test in human hepatoma (HepG2) cells with each compound (62.5-1000 µM) exposing for 48 h (two-cell cycle) was negative, however, pretreatment with bisphenol AF (0.1-100 nM, CYPs inducer) and ethanol (0.2% v:v, CYP2E1 inducer) potentiated micronucleus formation by both compounds, while CITCO (1 µM, CYP2B6 inducer) selectively potentiated that by NNN. In C3A cells (endogenous CYPs enhanced over HepG2) both compounds induced micronucleus, which was abolished by 1-aminobenzotriazole (60 µM, CYPs inhibitor) while unaffected by 8-methoxypsoralen (1 µM, CYP2A inhibitor). Consistently, NNN and NAB induced micronucleus in V79-derived recombinant cell lines expressing human CYP2B6/2E1 and CYP1B1/2E1, respectively, while negative in those expressing other CYPs. By immunofluorescent assay both compounds selectively induced centromere-free micronucleus in C3A cells. In PIG-A assays in HepG2 cells NNN and NAB were weakly positive and simply negative, respectively; however, in C3A cells both compounds significantly induced gene mutations, NNN being slight more potent. Conclusively, both NNN and NAB are mutagenic and clastogenic, depending on metabolic activation by partially different CYP enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450 , Testes para Micronúcleos , Nitrosaminas , Humanos , Nitrosaminas/toxicidade , Nitrosaminas/metabolismo , Células Hep G2 , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Simulação de Acoplamento Molecular , Mutagênicos/toxicidade , Nicotiana
16.
Asian Pac J Cancer Prev ; 25(3): 885-892, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546071

RESUMO

OBJECTIVE: Gastric cancer (GC) is one of the most common malignancies and ranks third in terms of cancer-related mortality. This study aims to identify the hub genes and potential mechanisms in GC using a bioinformatics approach. METHODS: Microarray data GSE54129, GSE79973, GSE55696 were extracted from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) was identified using Benjamini-Hochberg method in the limma package. GO and KEGG pathway enrichment analyses of the DEGs were conducted. Furthermore, protein-protein interaction network was constructed the STRING platform, and the hub genes were discovered using Maximal Clique Centrality method via cytoHubba. The predictive significance of hub genes was evaluated through GSE15459 dataset. RESULTS: A total of 73 genes was identified as DEGs in GC. Volcano plots and heatmaps of DEGs were visualized. Functional enrichment analysis revealed that the genes were mostly enriched in response to xenobiotic stimulus, digestion, cellular hormone metabolic process, extracellular matrix structural constituent, calcium-dependent cysteine-type endopeptidase activity, aromatase activity, apical part of cell, basal part of cell, and apical plasma membrane. Regarding KEGG pathway-enrichment, the genes were mainly involved in Drug metabolism-cytochrome P450, Retinol metabolism, Chemical carcinogenesis-DNA adducts, Gastric acid secretion, and Metabolism of xenobiotics by cytochrome P450. By combining the results of Cytohubba, the top five intersecting genes identified were SPP1, INHBA, MMP7, THBS2 and FAP. Kapplan-Meier analysis results showed that these 5 hub genes were highly related to the overall survival of patients. CONCLUSION: SPP1, INHBA, MMP7, THBS2, and FAP were identified as prospective biomarkers and therapeutic targets for GC that might be utilized for prognostic evaluation and scheme selection.


Assuntos
Neoplasias Gástricas , Transcriptoma , Humanos , Neoplasias Gástricas/patologia , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/genética
17.
Biomed Khim ; 70(1): 33-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450679

RESUMO

Ruthenium nitrosyl complexes are actively investigated as antitumor agents. Evaluation of potential interactions between cytochromes P450 (CYPs) with new compounds is carried out regularly during early drug development. In this study we have investigated the cytotoxic and antiproliferative activities of ruthenium nitrosyl complexes with methyl/ethyl esters of nicotinic and isonicotinic acids and γ-picoline against 2D and 3D cultures of human hepatocellular carcinoma HepG2 and non-cancer human lung fibroblasts MRC-5, assessed their photoinduced activity at λrad = 445 nm, and also evaluated their modulating effect on CYP3A4, CYP2C9, and CYP2C19. The study of cytotoxic and antiproliferative activities against 2D and 3D cell models was performed using phenotypic-based high content screening (HCS). The expression of CYP3A4, CYP2C9, and CYP2C19 mRNAs and CYP3A4 protein was examined using target-based HCS. The results of CYP3A4 mRNA expression were confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). The ruthenium nitrosyl complexes exhibited a dose-dependent cytotoxic effect against HepG2 and MRC-5 cells. The cytotoxic activity of complexes with ethyl isonicotinate (1) and nicotinate (3, 4) was significantly lower for MRC-5 than for HepG2, for a complex with methyl isonicotinate (2) it was higher for MRC-5 than for HepG2, for a complex with γ-picoline (5) it was comparable for both lines. The antiproliferative effect of complexes 2 and 5 was one order of magnitude higher for MRC-5; for complexes 1, 3, and 4 it was comparable for both lines. The cytotoxic activity of all compounds for 3D HepG2 was lower than for 2D HepG2, with the exception of 4. Photoactivation affected the activity of complex 1 only. Its cytotoxic activity decreased, while the antiproliferative activity increased. The ruthenium nitrosyl complexes 1-4 acted as inducers of CYP3A4 and CYP2C19, while the complex with γ-picoline (5) induced of CYP3A4. Among the studied ruthenium nitrosyl complexes, the most promising potential antitumor compound is the ruthenium compound with methyl nicotinate (4).


Assuntos
Antineoplásicos , Rutênio , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP2C19 , Rutênio/farmacologia , Células Hep G2 , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450 , Antineoplásicos/farmacologia , Picolinas
18.
Pestic Biochem Physiol ; 199: 105775, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458682

RESUMO

Insect cuticular protein (ICP) plays an important role in insect growth and development. However, research on the role of ICP in insecticide resistance is very limited. In this study, insect cuticular protein genes LCP17 and SgAbd5 were cloned and characterized in Helicoverpa armigera based on previous transcriptome data. The functions of LCP17 and SgAbd5 genes in fenvalerate resistance were assessed by RNA interference (RNAi), and their response to fenvalerate was further detected. The results showed that LCP17 and SgAbd5 were overexpressed in the fenvalerate-resistant strain comparing with a susceptible strain. The open reading frames of LCP17 and SgAbd5 genes were 423 bp and 369 bp, encoding 141 and 123 amino acids, respectively. LCP17 and SgAbd5 genes were highly expressed in the larval stage, but less expressed in the adult and pupal stages. The expression level of LCP17 and SgAbd5 genes increased significantly after fenvalerate treatment at 24 h. When the cotton bollworms larvae were exposed to fenvalerate at LD50 level, RNAi-mediated silencing of LCP17 and SgAbd5 genes increased the mortality from 50.68% to 68.67% and 63.89%, respectively; the mortality increased to even higher level, which was 73.61%, when these two genes were co-silenced. Moreover, silencing of these two genes caused the cuticle lamellar structure to become loose, which led to increased penetration of fenvalerate into the larvae. The results suggested that LCP17 and SgAbd5 may be involved in the resistance of cotton bollworm to fenvalerate, and LCP17 and SgAbd5 could serve as potential targets for H. armigera control.


Assuntos
Inseticidas , Mariposas , Nitrilas , Piretrinas , Animais , Inseticidas/toxicidade , Helicoverpa armigera , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Mariposas/genética , Mariposas/metabolismo , Larva/genética , Larva/metabolismo
19.
Drug Metab Dispos ; 52(5): 455-466, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38467432

RESUMO

Bupropion is used for treating depression, obesity, and seasonal affective disorder, and for smoking cessation. Bupropion is commonly prescribed, but has complex pharmacokinetics and interindividual variability in metabolism and bioactivation may influence therapeutic response, tolerability, and safety. Bupropion is extensively and stereoselectively metabolized, the metabolites are pharmacologically active, and allelic variation in cytochrome P450 (CYP) 2B6 affects clinical hydroxylation of single-dose bupropion. Genetic effects on stereoselective disposition of steady-state bupropion are not known. In this preplanned secondary analysis of a prospective, randomized, double-blinded, crossover study which compared brand and generic bupropion XL 300 mg drug products, we measured steady-state enantiomeric plasma and urine parent bupropion and primary and secondary metabolite concentrations. This investigation evaluated the influence of genetic polymorphisms in CYP2B6, CYP2C19, and P450 oxidoreductase on the disposition of Valeant Pharmaceuticals Wellbutrin brand bupropion in 67 participants with major depressive disorder. We found that hydroxylation of both bupropion enantiomers was lower in carriers of the CYP2B6*6 allele and in carriers of the CYP2B6 516G>T variant, with correspondingly greater bupropion and lesser hydroxybupropion plasma concentrations. Hydroxylation was 25-50% lower in CYP2B6*6 carriers and one-third to one-half less in 516T carriers. Hydroxylation of the bupropion enantiomers was comparably affected by CYP2B6 variants. CYP2C19 polymorphisms did not influence bupropion plasma concentrations or hydroxybupropion formation but did influence the minor pathway of 4'-hydroxylation of bupropion and primary metabolites. P450 oxidoreductase variants did not influence bupropion disposition. Results show that CYP2B6 genetic variants affect steady-state metabolism and bioactivation of Valeant brand bupropion, which may influence therapeutic outcomes. SIGNIFICANCE STATEMENT: Bupropion, used for depression, obesity, and smoking cessation, undergoes metabolic bioactivation, with incompletely elucidated interindividual variability. We evaluated cytochrome P450 (CYP) 2B6, CYP2C19 and P450 oxidoreductase genetic variants and steady-state bupropion and metabolite enantiomers disposition. Both enantiomers hydroxylation was lower in CYP2B6*6 and CYP2B6 516G>T carriers, with greater bupropion and lesser hydroxybupropion plasma concentrations. CYP2C19 polymorphisms did not affect bupropion or hydroxybupropion but did influence minor 4'-hydroxylation of bupropion and primary metabolites. CYP2B6 variants affect steady-state bupropion bioactivation, which may influence therapeutic outcomes.


Assuntos
Bupropiona , Bupropiona/análogos & derivados , Transtorno Depressivo Maior , Humanos , Bupropiona/farmacocinética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C19 , Farmacogenética , Estudos Cross-Over , Estudos Prospectivos , Sistema Enzimático do Citocromo P-450/genética , Obesidade , Oxirredutases N-Desmetilantes/genética
20.
Chem Biol Interact ; 392: 110923, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382706

RESUMO

Aflatoxin B1 (AFB1) is the most toxic mycotoxin and a proven human carcinogen that requires metabolic activation, known by cytochrome P450 (CYP) 1A2 and 3A4. Previous evidence showed that AFB1 is activated by human recombinant CYP1A1 expressed in budding yeast. Yet, the toxicity, in particular the genotoxicity of the reactive metabolites formed from AFB1 remains unclear. Humans could be exposed to both AFB1 and benzo(a)pyrene (BaP) simultaneously, thus we were interested in their combined genotoxic effects subsequent to metabolic activation by CYP1A1. In this study, molecular docking of AFB1 to human CYP1A1 indicated that AFB1 is valid as a substrate. In the incubations with AFB1 in human CYP1A1-expressed microsomes, AFM1 as a marking metabolite of AFB1 was detected. Moreover, AFB1 induced micronucleus formation in a Chinese hamster V79-derived cell line and in a human lung epithelial BEAS-2B cell line, both expressing recombinant human CYP1A1, V79-hCYP1A1 and 2B-hCYP1A1 cells, respectively. Immunofluorescence of centromere protein B stained micronuclei was dominant in AFB1-treated BEAS-2B cells exposed to AFB1, suggesting an aneugenic effect. Moreover, AFB1 elevated the levels of ROS, 8-OHdG, AFB1-DNA adduct, and DNA breaks in 2B-hCYP1A1 cells, compared with those in the parental BEAS-2B cells. Meanwhile, AFB1 increased CYP1A1, RAD51, and γ-H2AX protein levels in 2B-hCYP1A1 cells, which were attenuated by the CYP1A1 inhibitor bergamottin. Co-exposure of AFB1 with BaP increased 8-OHdG, RAD51, and γ-H2AX levels (indicating DNA damage). In conclusion, AFB1 could be activated by human CYP1A1 for potent aneugenicity, which may be further enhanced by co-exposure to BaP.


Assuntos
Citocromo P-450 CYP1A1 , Sistema Enzimático do Citocromo P-450 , Animais , Humanos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Benzo(a)pireno/toxicidade , Aneugênicos , Simulação de Acoplamento Molecular , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA